Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

2-Ethylphenyl acridine-9-carboxylate and 2,5-dimethylphenyl acridine-9carboxylate

Artur Sikorski, ${ }^{\text {a }}$ Karol Krzymiński, ${ }^{\text {a }}$ Antoni Konitz ${ }^{\text {b,a }}$ and Jerzy Błażejowski ${ }^{\text {a* }}$

${ }^{\text {a }}$ University of Gdańsk, Faculty of Chemistry, J. Sobieskiego 18, 80-952 Gdańsk, Poland, and ${ }^{\mathbf{b}}$ Gdańsk University of Technology, Department of Inorganic Chemistry,
G. Narutowicza 11/12, 80-952 Gdańsk, Poland

Correspondence e-mail: bla@chem.univ.gda.pl
Received 13 September 2004
Accepted 23 November 2004
Online 18 December 2004

The title compounds, 2-ethylphenyl acridine-9-carboxylate, $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{NO}_{2}$, (I), and 2,5-dimethylphenyl acridine-9-carboxylate, $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{NO}_{2}$, (II), form triclinic and monoclinic crystals, respectively. Related by a centre of symmetry, adjacent molecules of (I) are linked in the lattice via a network of $\mathrm{C}-\mathrm{H} \cdots \pi$ and non-specific dispersive interactions. As a result, acridine moieties and independent phenyl moieties of (I) are parallel in the lattice. The molecules of (II), arranged in a 'head-to-tail' manner and related by a centre of symmetry, form pairs stabilized via $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions. These are linked in the crystal via dispersive interactions. Acridine and independent phenyl moieties lie parallel within the pairs, while adjacent pairs are perpendicular, forming a herring-bone pattern.

Comment

Phenyl esters of acridine-9-carboxylic acids are precursors of practically important chemiluminescent indicators and chemiluminogenic fragments of chemiluminescent labels (Dodeigne et al., 2000; Zomer \& Jacquemijns, 2001). This is because 9-carboxy-10-methylacridinium phenyl esters react

(I)

(II)
efficiently with hydrogen peroxide in alkaline media, which leads to electronically excited 10-methyl-9-acridinones emit-
ting radiation (Rak et al., 1999). Among other things, this effect is utilized in quantitative assays of macromolecules present in living matter, that is, in immunological, medical, environmental and biochemical analyses (Adamczyk et al., 1999; Dodeigne et al., 2000; Razawi \& McCapra, 2000; Smith et al., 2000; Zomer \& Jacquemijns, 2001). Despite the longstanding interest shown in this group of compounds, there is only one publication to date (our own) on the crystallography of 2-methylphenyl 2-methoxyacridine-9-carboxylate (Meszko et al., 2002). It is thus important to extend investigations to further representatives of this group, especially

Figure 1
The molecular structure of (I), showing the atom-labelling scheme and 50% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii.

Figure 2
The arrangement of the molecules of (I) in the unit cell, viewed along the c axis. H atoms not involved in $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions have been omitted. $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions are represented by dashed lines.
since information on the structure, crystal packing and other features may help in the design of very stable compounds that are nevertheless highly reactive towards oxidizing agents (hydrogen peroxide). This paper presents the crystal structure of two isomers, (I) and (II), alkyl-substituted in the phenyl ester group, of phenyl acridine-9-carboxylate.

The acridine and phenyl moieties in (I), with average deviations from planarity of 0.0123 and $0.0033 \AA$, respectively, are oriented at an angle of 62.1 (2) ${ }^{\circ}$ (defined as γ, the angle between the mean planes delineated by all the non-H atoms of the acridine and phenyl moieties; Fig. 1 and Table 1). The carboxyl group is twisted relative to the acridine skeleton, at an angle of $67.3(2)^{\circ}$ (defined as δ, the angle between the mean planes delineated by all the non- H atoms of the acridine moiety and atoms C15, O16 and O17).

In the crystalline phase, adjacent molecules of (I), related by a centre of symmetry, are linked via a network of $\mathrm{C}-\mathrm{H} \cdots \pi$

Figure 3
The molecular structure of (II), showing the atom-labelling scheme and 50% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii.

Figure 4
Part of the crystal structure of (II) in the unit cell, viewed along the c axis, showing the centrosymmetric linking of the molecules by pairs of $\mathrm{C}-$ $\mathrm{H} \cdots \pi$ interactions (dashed lines). H atoms not involved in $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions have been omitted.
interactions and non-specific dispersive interactions (Fig. 2 and Table 2). As a result, the acridine moieties and independent phenyl moieties are parallel in the lattice.

The planes of the acridine and phenyl moieties in (II), with average deviations from planarity of 0.0013 and $0.0056 \AA$, respectively, have a γ angle of 35.7 (2) ${ }^{\circ}$ (Fig. 3 and Table 3). The carboxyl group is twisted relative to the acridine skeleton, with a δ angle of $68.1(2)^{\circ}$.

Arranged in a 'head-to-tail' manner, the molecules of (II) form pairs stabilized through $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (Table 4). These pairs of molecules, related by a centre of symmetry, are linked in the crystal via dispersive interactions. The acridine moieties and independent phenyl moieties within the pairs are parallel, while adjacent pairs, which form a herring-bone pattern in the crystal, lie perpendicular to one another (Fig. 4).

Experimental

Compounds (I) and (II) were synthesized by conversion of commercially available acridine-9-carboxylic acid to acid chloride, and by reaction of the latter with 2-ethylphenol for (I) or 2,5-dimethylphenol for (II) (Sato, 1996). The crude products were purified chromatographically $\left(\mathrm{SiO}_{2}\right.$, cyclohexane/ethyl acetate, 3:2 $\left.\mathrm{v} / \mathrm{v}\right)$. Elemental analyses (\% found/calculated) for (I): C 81.07/80.71, H 5.07/5.23, N 4.34/4.28; for (II): C 80.49/80.71, H 5.09/5.23, N $4.22 /$ 4.28. In both cases, pale-yellow crystals suitable for X-ray investigations were grown from cyclohexane [m.p. 387-389 K for (I) and 452454 K for (II)].

Compound (I)

Crystal data
$\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{NO}_{2}$
$M_{r}=327.37$
Triclinic, $P \overline{1}$
$a=7.995$ (2) \AA
$b=9.465$ (2) \AA
$c=11.899$ (2) \AA
$\alpha=92.12(3)^{\circ}$
$\beta=98.96(3)^{\circ}$
$\gamma=106.28$ (3) ${ }^{\circ}$
$V=850.7$ (4) \AA^{3}

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.278 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Mo $K \alpha$ radiation
Cell parameters from 50
reflections
$\theta=2.3-26.0^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, yellow
$0.5 \times 0.4 \times 0.3 \mathrm{~mm}$

Data collection

Kuma KM-4 diffractometer
$\theta / 2 \theta$ scans
3507 measured reflections
3337 independent reflections
1788 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.017$
$\theta_{\text {max }}=26.0^{\circ}$

$$
\begin{aligned}
& h=-9 \rightarrow 9 \\
& k=-11 \rightarrow 11 \\
& l=-14 \rightarrow 0 \\
& 3 \text { standard reflections } \\
& \text { every } 200 \text { reflections } \\
& \text { intensity decay: } 1.3 \%
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$ for (I).

C9-C11	$1.400(3)$	$\mathrm{C} 15-\mathrm{O} 16$	$1.351(2)$
C9-C15	$1.491(2)$	$\mathrm{C} 15-\mathrm{O} 17$	$1.195(2)$
N10-C12	$1.339(3)$	$\mathrm{O} 16-\mathrm{C} 18$	$1.414(2)$
C9-C15-O16	$111.19(16)$	$\mathrm{C} 15-\mathrm{O} 16-\mathrm{C} 18$	$117.60(14)$
C9-C15-O17	$125.0(2)$	$\mathrm{O} 16-\mathrm{C} 15-\mathrm{O} 17$	$123.74(17)$
C9-C15-O16-C18	$-177.82(16)$	$\mathrm{C} 15-\mathrm{O} 16-\mathrm{C} 18-\mathrm{C} 19$	$-116.7(2)$
C11-C9-C15-O17	$50.8(3)$		

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.125$
$S=1.02$
3337 reflections
227 parameters
H -atom parameters constrained

Table 2
Geometry of $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions $\left(\AA^{\circ},^{\circ}\right)$ for (I).
$\operatorname{Cg} A$ is the centroid of the six-membered ring A (atoms $\mathrm{C} 18-\mathrm{C} 23$) and $C g B$ is the centroid of the six-membered ring B (atoms C9/N10/C11-C14) (Fig. 1).

	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2-\mathrm{H} 2 A \cdots C g A^{\mathrm{i}}$	0.96	2.81	$3.608(3)$	142
$\mathrm{C} 6-\mathrm{H} 6 A \cdots C g A^{\mathrm{ii}}$	0.96	2.81	$3.540(3)$	133
$\mathrm{C} 24-\mathrm{H} 24 A \cdots C g B^{\mathrm{iii}}$	0.96	2.70	$3.576(3)$	151

Symmetry codes: (i) $-x+1,-y+1,-z+2$; (ii) $-x,-y+2,-z+2$; (iii) $-x+1$, $-y+2,-z+2$.

Compound (II)

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{22} \mathrm{H}_{17} \mathrm{NO}_{2} \\
& M_{r}=327.37 \\
& \text { Monoclinic, } P 2_{1} / c \\
& a=11.769(2) \AA \\
& b=15.404(3) \AA \\
& c=10.125(2) \AA \\
& \beta=115.18(3)^{\circ} \\
& V=1661.1(7) \AA^{3} \\
& Z=4
\end{aligned}
$$

$$
D_{x}=1.309 \mathrm{Mg} \mathrm{~m}^{-3}
$$

$$
\text { Mo } K \alpha \text { radiation }
$$

$$
\text { Cell parameters from } 50
$$ reflections

$\theta=2.3-26^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, yellow
$0.5 \times 0.4 \times 0.3 \mathrm{~mm}$

Data collection

Kuma KM-4 diffractometer

$\theta / 2 \theta$ scans
$h=0 \rightarrow 14$
3424 measured reflections
3267 independent reflections
1619 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.019$
$\theta_{\text {max }}=26.0^{\circ}$

Refinement

Refinement on F^{2}
$k=-19 \rightarrow 0$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.103$
$S=0.92$
3267 reflections
227 parameters
H -atom parameters constrained
$l=-12 \rightarrow 11$
3 standard reflections every 200 reflections intensity decay: 0.6%

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0582 P)^{2}\right] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.17 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.15 \mathrm{e}^{-3} \\
& \text { Extinction correction: } S H E L X L 97 \\
& \quad \text { (Sheldrick, 1997) } \\
& \text { Extinction coefficient: } 0.0155(17)
\end{aligned}
$$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0568 P)^{2}\right. \\
& +0.1515 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \text { 。 } \\
& \Delta \rho_{\text {max }}=0.20 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.18 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { (Sheldrick, 1997) } \\
& \text { Extinction coefficient: } 0.027 \text { (4) }
\end{aligned}
$$

All H atoms were placed geometrically and refined using a riding model, with $\mathrm{C}-\mathrm{H}$ distances of $0.96 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}$ (methyl C).

For both compounds, data collection: KM-4 Software (Kuma, 1989); cell refinement: KM-4 Software; data reduction: KM-4 Soft-

Table 3
Selected geometric parameters ($\AA^{\circ},{ }^{\circ}$) for (II).

C9-C11	$1.395(2)$	$\mathrm{C} 15-\mathrm{O} 16$	$1.330(2)$
C9-C15	$1.487(2)$	$\mathrm{C} 15-\mathrm{O} 17$	$1.182(2)$
N10-C12	$1.335(2)$	$\mathrm{O} 16-\mathrm{C} 18$	$1.413(2)$
C9-C15-O16	$110.12(13)$	$\mathrm{C} 15-\mathrm{O} 16-\mathrm{C} 18$	$119.69(12)$
C9-C15-O17	$126.07(15)$	$\mathrm{O} 16-\mathrm{C} 15-\mathrm{O} 17$	$123.80(15)$
C9-C15-O16-C18	$176.78(13)$	$\mathrm{C} 15-\mathrm{O} 16-\mathrm{C} 18-\mathrm{C} 23$	$71.6(2)$
C11-C9-C15-O17	$79.4(2)$		

Table 4
Geometry of $\mathrm{C}-\mathrm{H}^{\cdots} \cdot \pi$ interactions $\left(\mathrm{A},{ }^{\circ}\right.$) for (II).
$C g C$ is the centroid of the six-membered ring C (atoms C5-C8/C13/C14) (Fig. 3).

	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C25-H25C $\cdots C g C^{\mathrm{i}}$	0.96	2.87	$3.622(2)$	136
Symmetry code: $(\mathrm{i})-x+1, y+\frac{3}{2},-z+\frac{3}{2}$.				

ware; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the Polish State Committee for Scientific Research (KBN) for financial support through grant No. 4 T09A 12323 (contract No. 0674/T09/2002/23).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GA1086). Services for accessing these data are described at the back of the journal.

References

Adamczyk, M., Chen, Y. Y., Mattingly, P. G., Moore, J. A. \& Shreder, K. (1999). Tetrahedron, 55, 10899-10914.
Dodeigne, C., Thunus, L. \& Lejeune, R. (2000). Talanta, 51, 415-439.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kuma (1989). Kuma KM-4 Software User's Guide. Version 3.1. Kuma Diffraction, Wrocław, Poland.
Meszko, J., Krzymiński, K., Konitz, A. \& Błażejowski, J. (2002). Acta Cryst. C58, o157-o158.
Rak, J., Skurski, P. \& Błażejowski, J. (1999). J. Org. Chem. 64, 3002-3008.
Razawi, Z. \& McCapra, F. (2000). Luminescence, 15, 245-249.
Sato, N. (1996). Tetrahedron Lett. 37, 8519-8522.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Smith, K., Li, Z., Yang, J. J., Weeks, I. \& Woodhead, J. S. (2000). J. Photochem. Photobiol. A, 132, 181-191.
Zomer, G. \& Jacquemijns, M. (2001). Chemiluminescence in Analytical Chemistry, edited by A. M. Garcia-Campana \& W. R. G. Baeyens, pp. 529549. New York: Marcel Dekker.

